
NGINX App Protect Documentation

Matthieu Dierick

Dec 03, 2020

CONTENTS:

1 Publish and protect modern applications 1
1.1 Class 1 - Deploy modern application with modern tools . 1
1.2 Class 2 - Protect Arcadia with NGINX App Protect in Docker . 12
1.3 Class 3 - Protect Arcadia with NGINX App Protect in Linux host 36
1.4 Class 4 - Protect Arcadia with NGINX App Protect in Kubernetes Ingress Controller 43
1.5 Class 5 - Advanced features . 46

i

ii

CHAPTER

ONE

PUBLISH AND PROTECT MODERN APPLICATIONS

Warning: For any remark or mistake in this lab, please send a Teams chat to Matthieu DIERICK.

1.1 Class 1 - Deploy modern application with modern tools

In this class, we will deploy a modern application (Arcadia Finance app) with modern tools in a modern environment.

What are modern tools:

• Ansible

• Terraform

• Gitlab and Gitlab CI

What is a modern environment:

• Kubernetes

• Docker containers with docker registry

1

NGINX App Protect Documentation

Note: Don’t be afraid if you don’t know those tools. The goal of the lab is not to learn how to deploy them, but how
to use them.

First of all, this is Arcadia Finance application

Class 1 - All sections

1.1.1 Architecture of Arcadia Application

Note: This application is available in GitLab in case you want to build your own lab :

First of all, it is important to understand how Arcadia app is split between micro-services

This is what Arcadia App looks like when the 4 microservices are up and running, and you can see how traffic
is routed based on URI

2 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

But you can deploy Arcadia Step by Step

If you deploy only Main App and Back End services.

Note: You can see App2 (Money Transfer) and App3 (Refer Friend) are not available. There is dynamic content
showing a WARNING instead of a 404 or blank frame.

1.1. Class 1 - Deploy modern application with modern tools 3

NGINX App Protect Documentation

If you deploy Main App, Back End and Money Tranfer services.

If you deploy Main App, Back End, Money Tranfer and Refer Friend services.

4 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

1.1.2 Workflow of this lab

The demo is split into 3 classes and 9 steps :

1. Deploy modern application with modern tools

1. Deploy and publish Arcadia Finance application in Kubernetes

2. Publish Arcadia app with an NGNIX Plus Ingress Controller

2. Protect Arcadia with NGINX App Protect in Docker

1. Build your first NAP (NGINX App Protect) docker image

2. Update this image with the latest WAF signatures

3. Check logs in Kibana

4. Customize the WAF policy

5. Deploy NAP with a CI/CD a toolchain

3. Protect Arcadia with NGINX App Protect in Linux host

1. Install the NGINX Plus and App Protect packages manually

2. Deploy App Protect via CI/CD pipeline

Step 1 - Deploy and publish Arcadia Finance application in Kubernetes

Note: Goal is to deploy Arcadia Application in Kubernetes

Tasks:

1. Run a Kubernetes command (kubectl) that will download Arcadia containers from an external public repo (Git-
lab.com), and run them

2. Check in Kubernetes Dashboard if Arcadia is deployed and runnning

Step 2 - Publish Arcadia app with a NGINX Plus Ingress Controller

Note: Goal is to publish Arcadia application outside the Kubernetes cluster and use NGINX Plus Ingress Controller
for that

Tasks:

1. Run a Kubernetes command (kubectl) that will download and run an NGINX Plus Ingress Controller image
from a private repo (Gitlab.com)

2. Check how this NIC (NGINX Ingress Controller) is set in order to route packets to the right Arcadia container
(pod)

1.1. Class 1 - Deploy modern application with modern tools 5

NGINX App Protect Documentation

Step 3 - Build your first NAP (NGINX App Protect) docker image

Note: Goal is to build your first NAP docker image and run it

Tasks:

1. Run a docker build command using a Dockerfile

2. Run a docker run command to start this docker container in front of Arcadia application

3. Check the signature package included in this image

4. Check that Aracadia is protected

Step 4 - Update this image with the latest WAF signature

Note: Goal is to create a new NAP image with the latest Signature package.

Task:

1. Run the same Docker build command but with a new Dockerfile containing the new repo with the signatures

2. Destroy the previous NAP container and run a new one from this new image

3. Check the signature date

Step 5 - Update the Docker image with the Threat Campaign package

Note: Goal is to create a new NAP image with the latest Threat Campaign package ruleset.

Task:

1. Run the same Docker build command but with a new Dockerfile containing the new package to install

2. Destroy the previous NAP container and run a new one from this new image

3. Check the Threat Campaign ruleset date

6 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

Step 6 - Check logs in Kibana

Note: Goal is to check logs in ELK (Elastic, Logstash, Kibana)

Task:

1. Connect to Kibana and check logs

Step 7 - Customize the WAF policy

Note: Goal is to customize the WAF policy in front of Arcadia application. By default, a base policy is deployed.

Task:

1. Run NAP container with a new nginx.conf file refering to the new policies

Step 8 - Deploy NAP with a CI/CD toolchain

Note: Goal is to deploy NAP in a real environment with a CI/CD toolchain in place.

Task:

1. Upload a new signature package into the local repo (gitlab) or ask for an update

2. GitLab CI build a new version of the NAP image with this new signature package

3. Deploy and run this new version of the NAP image in front of Arcadia

4. Check the signature package date

Step 9 - Install the NGINX Plus and App Protect packages manually

Note: Goal is to deploy NAP and NGINX Plus in a CentOS linux host.

Task:

1. Install NGINX Plus r20

2. Install NGINX App Protect

1.1. Class 1 - Deploy modern application with modern tools 7

NGINX App Protect Documentation

3. Install NGINX App Protect Signature Package

Step 10 - Deploy App Protect via CI/CD pipeline

Note: Goal is to deploy NAP by using a CI/CD pipeline with automation toolchain packages provided by F5.

Task:

1. Use CI/CD toolchain in order to deploy NAP automatically with the latest signature package.

Step 11 - Deploy a new version of the NGINX Plus Ingress Controller

Note: Goal is to deploy NAP in the Kubernetes Ingress Controller. Since NAP v1.3, NAP can be deployed in a KIC
with NGINX+

Task:

1. Pull NGINX+ KIC image from my private Gitlab repo

2. Deploy a new Ingress configuration with NAP annotations and configuration

Step 12 - API Security with OpenAPI file import

Note: Goal is to deploy NAP in Centos to protect an API

Tasks:

1. Push OpenAPI file to a repo (swaggerhub in this lab)

2. Create a new NAP policy based on this OAS file

1.1.3 Step 1 - Deploy and publish Arcadia Finance application in Kubernetes

It’s time to deploy Arcadia Finance application :)

Deploy Arcadia Application with kubectl command

With Kubernetes, there are several ways to deploy containers (pods). One way is to use kubectl command with a
YAML deployment file. I prepared this YAML file below (this is only for the main app container). You can have a
look, and see it will deploy containers from my Gitlab.com repo.

apiVersion: v1
kind: Service
metadata:
name: main
namespace: default

(continues on next page)

8 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

(continued from previous page)

labels:
app: main

spec:
type: NodePort
ports:
- name: main-80

nodePort: 30511
port: 80
protocol: TCP
targetPort: 80

selector:
app: main

apiVersion: apps/v1
kind: Deployment
metadata:
name: main
namespace: default
labels:

app: main
version: v1

spec:
replicas: 1
selector:

matchLabels:
app: main
version: v1

template:
metadata:
labels:

app: main
version: v1

spec:
containers:
- env:

- name: service_name
value: main
image: registry.gitlab.com/arcadia-application/main-app/mainapp:latest
imagePullPolicy: IfNotPresent
name: main
ports:
- containerPort: 80
protocol: TCP

Note: To make it simple, it deploys the container from gitlab.com repo, and a service. The service is used later on by
the NGINX Plus Ingress Controller.

Steps :

1. SSH (or WebSSH and cd /home/ubuntu/) to CICD Server

2. Run this command kubectl apply -f /home/ubuntu/Arcadia_k8S/all_apps.yaml

3. RDP to the jumphost with user:user as credentials

4. Open Chrome

1.1. Class 1 - Deploy modern application with modern tools 9

NGINX App Protect Documentation

5. Open Kubernetes Dashboard bookmark (if not already opened)

6. Click skip on the logon page

7. You should see the services and the pods

Warning: Arcadia Application is running but not yet available for the customers. We need to publish it.

Video of this module (force HD 1080p in the video settings)

1.1.4 Step 2 - Publish Arcadia app with a NGINX Plus Ingress Controller

It’s time to publish Arcadia application externally from the Kubernetes cluster.

Deploy the NGINX Plus Ingress Controller

Now, Arcadia App is running in the Kubernetes Cluster. We need a solution to publish it externally (using Kubernetes
front end IP addresses) and routing the packets to the right pods (main, back, app2, app3)

To do so, I prepared a kubectl Kubernetes Deployment in YAML.

Steps:

1. SSH (or WebSSH and cd /home/ubuntu/) to CICD Server

10 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

2. Run this command kubectl apply -f /home/ubuntu/k8s_ingress/
full_ingress_arcadia.yaml

3. You should now see a new namespace nginx-ingress and a new ingress in the Kubernetes Dashboard on
the Jumphost

4. Check the Ingress arcadia-ingress (in the default namespace) by clicking on the 3 dots on the right
and edit

5. Scroll down and check the specs

spec:
rules:

- host: k8s.arcadia-finance.io
http:

paths:
- path: /

pathType: ImplementationSpecific
backend:
serviceName: main
servicePort: 80

- path: /files
pathType: ImplementationSpecific
backend:
serviceName: backend
servicePort: 80

- path: /api
pathType: ImplementationSpecific
backend:
serviceName: app2
servicePort: 80

- path: /app3
pathType: ImplementationSpecific
backend:
serviceName: app3
servicePort: 80

Note: You can see the Ingress is routing the packets to the right service based on the URI.

Note: Now, Arcadia is available for customers.

Steps:

1. In Chrome, click on the bookmark Arcadia k8s

2. Click on Login

3. Login with matt:ilovef5

1.1. Class 1 - Deploy modern application with modern tools 11

NGINX App Protect Documentation

4. You should see all the apps running (main, back, app2 and app3)

1.2 Class 2 - Protect Arcadia with NGINX App Protect in Docker

In this class, we will deploy App Protect with several methods. We will start with a manual method building the
Docker images, and we will finish with a full CI/CD pipeline workflow.

Note: At the moment, this lab does not cover the deployment of NAP in a Linux host. It covers only Docker
deployment. You can use Frida’s UDF blueprint to know how to deploy NAP in Linux host.

1.2.1 Step 3 - Build your first NAP (NGINX App Protect) Docker image

In this module, we will build manually our first NAP Docker image via command line.

Follow the step below to build the Docker image:

1. SSH (or WebSSH and cd /home/ubuntu/) to Docker App Protect + Docker repo VM

2. Run the command docker build -t app-protect:nosig . <– Be careful, there is a “.”
(dot) at the end of the command

3. Wait until you see the message: Successfully tagged app-protect:nosig

Note: This command execute the Dockerfile below

#For CentOS 7
FROM centos:7.4.1708

Download certificate and key from the customer portal (https://cs.nginx.
→˓com)

(continues on next page)

12 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

(continued from previous page)

and copy to the build context
COPY nginx-repo.crt nginx-repo.key /etc/ssl/nginx/

Install prerequisite packages
RUN yum -y install wget ca-certificates epel-release

Add NGINX Plus repo to yum
RUN wget -P /etc/yum.repos.d https://cs.nginx.com/static/files/nginx-plus-7.
→˓repo

Install NGINX App Protect
RUN yum -y install app-protect \

&& yum clean all \
&& rm -rf /var/cache/yum \
&& rm -rf /etc/ssl/nginx

Forward request logs to Docker log collector
#RUN ln -sf /dev/stdout /var/log/nginx/access.log \
&& ln -sf /dev/stderr /var/log/nginx/error.log

Copy configuration files
COPY nginx.conf log-default.json /etc/nginx/
COPY entrypoint.sh ./

CMD ["sh", "/entrypoint.sh"]

When Docker image is built :

1. Check if the app-protect Docker image is available locally by running docker images

2. Run a container with this image docker run -dit --name app-protect -p 80:80
-v /home/ubuntu/nginx.conf:/etc/nginx/nginx.conf app-protect:nosig

3. Check that the Docker container is running docker ps

4. Check the signature package date included in this image (by default) docker exec -it
app-protect more /var/log/nginx/error.log

1.2. Class 2 - Protect Arcadia with NGINX App Protect in Docker 13

NGINX App Protect Documentation

2020/05/19 16:59:29 [notice] 12#12: APP_PROTECT { "event": "configuration_
→˓load_success", "attack_signatures_package":{"revision_datetime":"2019-07-
→˓16T12:21:31Z"},"completed_successfully":true}

It’s time to test your lab

1. In Chrome, click on the bookmark Arcadia NAP Docker

2. Navigate in the app, and try some attacks like injections or XSS - I let you find the attacks :)

3. You will be blocked and see the default Blocking page

The requested URL was rejected. Please consult with your administrator.

Your support ID is: 14609283746114744748

[Go Back]

Note: Did you notice the blocking page is similar to ASM and Adv. WAF ?

Video of this module (force HD 1080p in the video settings)

Warning: You can notice some differences between the video and the lab. When I did the video, the dockerfile
was different. But the concept remains the same.

1.2.2 Step 4 - Update the Docker image with the latest WAF signatures

In this module, we will update the signature package in the Docker image.

Warning: There are several ways to update the signatures. All of them have pros and cons. In this lab, I decided
to create a new Docker image with the new signature package to preserve immutability. And then destroy and run
a new Docker container from this new image in front of Arcadia App.

The signatures are provided by F5 with an RPM package. The best way to update the image is to build a new image
from a new Dockerfile referring to this signature package (and change the image tag). We will use the Dockerfile
below:

#For CentOS 7
FROM centos:7.4.1708

Download certificate and key from the customer portal (https://cs.nginx.com)
and copy to the build context
COPY nginx-repo.crt nginx-repo.key /etc/ssl/nginx/

Install prerequisite packages
RUN yum -y install wget ca-certificates epel-release

Add NGINX Plus repo to yum
RUN wget -P /etc/yum.repos.d https://cs.nginx.com/static/files/nginx-plus-7.repo
RUN wget -P /etc/yum.repos.d https://cs.nginx.com/static/files/app-protect-signatures-
→˓7.repo

(continues on next page)

14 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

(continued from previous page)

Install NGINX App Protect
RUN yum -y install app-protect app-protect-attack-signatures\

&& yum clean all \
&& rm -rf /var/cache/yum \
&& rm -rf /etc/ssl/nginx

Forward request logs to Docker log collector
#RUN ln -sf /dev/stdout /var/log/nginx/access.log \
&& ln -sf /dev/stderr /var/log/nginx/error.log

Copy configuration files
COPY nginx.conf log-default.json /etc/nginx/
COPY entrypoint.sh ./

CMD ["sh", "/entrypoint.sh"]

Note: You may notice one more package versus the previous Dockerfile in Step 3. I added the package installation
app-protect-attack-signatures

Follow the steps below to build the new Docker image:

1. SSH to Docker App Protect + Docker repo VM

2. Run the command docker build -t app-protect:20200316 -f Dockerfile-sig . <– Be
careful, there is a “.” (dot) at the end of the command

3. Wait until you see the message: Successfully tagged app-protect:20200316

Note: Please take time to understand what we ran. You may notice 2 changes. We ran the build with a new Dockerfile
Dockerfile-sig and with a new tag 20200316 (date of the signature package when I built this lab). You can
put any tag you want, for instance the date of today. Because we don’t know the date of the latest Attack Signature
package.

Destroy the previous running NAP container and run a new one based on the new image (tag 20200316)

1. Check if the new app-protect Docker image is available locally by running docker images. You will notice
the new image with a tag of 20200316.

2. Destroy the existing and running NAP container docker rm -f app-protect

1.2. Class 2 - Protect Arcadia with NGINX App Protect in Docker 15

NGINX App Protect Documentation

3. Run a new container with this image docker run -dit --name app-protect -p 80:80 -v /
home/ubuntu/nginx.conf:/etc/nginx/nginx.conf app-protect:20200316

Warning: If you decided to change the tag 20200316 by another tag, change your command line accord-
ingly

4. Check that the Docker container is running docker ps

5. Check the signature package date included in the new Docker container docker exec -it
app-protect more /var/log/nginx/error.log

2020/05/20 09:30:20 [notice] 12#12: APP_PROTECT { "event": "configuration_
→˓load_success", "attack_signatures_package":{"revision_datetime":"2020-03-
→˓16T14:11:52Z","version":"2020.03.16"},"completed_successfully":true}

Note: Congrats, you are running a new version of NAP with an updated signature package.

Video of this module (force HD 1080p in the video settings)

Note: You can notice some differences between the video and the lab. When I did the video, the dockerfile was
different. But the concept remains the same.

1.2.3 Step 5 - Update the Docker image with the Threat Campaign package

In this module, we will install the package Threat Campaign into a new Docker image.

Threat Campaign is a feed from F5 Threat Intelligence team. This team is collecting 24/7 threats from internet and
darknet. They use several bots and honeypotting networks in order to know in advance what the hackers (humans or
robots) will target and how.

Unlike signatures, Threat Campaign provides with ruleset. A signature uses patterns and keywords like ' or
or 1=1. Threat Campaign uses rules that match perfectly an attack detected by our Threat Intelligence team.

Note: The App Protect installation does not come with a built-in Threat campaigns package like Attack Signatures.
Threat campaigns Updates are released periodically whenever new campaigns and vectors are discovered, so you
might want to update your Threat campaigns from time to time. You can upgrade the Threat campaigns by updating
the package any time after installing App Protect. We recommend you upgrade to the latest Threat campaigns version
right after installing App Protect.

For instance, if we notice a hacker managed to enter into our Struts2 system, we will do forensics and analyse the
packet that used the breach. Then, this team creates the rule for this request. A rule can contains all the HTTP L7
payload (headers, cookies, payload . . .)

16 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

Note: Unlike signatures that can generate False Positives due to low accuracy patterns, Threat Campaign is very
accurate and reduces drastically the False Positives.

Note: NAP provides with high accuracy Signatures + Threat Campaign ruleset. The best of bread to reduce FP.

Threat Campaign package is available with the app-protect-signatures-7.repo repository. It is provided
with the NAP subscription.

In order to install this package, we need to update our Dockerfile. I created another Dockerfile named
Dockerfile-sig-tc

#For CentOS 7
FROM centos:7.4.1708

Download certificate and key from the customer portal (https://cs.nginx.com)
and copy to the build context
COPY nginx-repo.crt nginx-repo.key /etc/ssl/nginx/

Install prerequisite packages
RUN yum -y install wget ca-certificates epel-release

Add NGINX Plus repo to yum
RUN wget -P /etc/yum.repos.d https://cs.nginx.com/static/files/nginx-plus-7.repo
RUN wget -P /etc/yum.repos.d https://cs.nginx.com/static/files/app-protect-signatures-
→˓7.repo

Install NGINX App Protect
RUN yum -y install app-protect app-protect-attack-signatures app-protect-threat-
→˓campaigns\

&& yum clean all \
&& rm -rf /var/cache/yum \
&& rm -rf /etc/ssl/nginx

Forward request logs to Docker log collector
#RUN ln -sf /dev/stdout /var/log/nginx/access.log \
&& ln -sf /dev/stderr /var/log/nginx/error.log

Copy configuration files
COPY nginx.conf log-default.json /etc/nginx/
COPY entrypoint.sh ./

CMD ["sh", "/entrypoint.sh"]

Note: You may notice one more package versus the previous Dockerfile in Step 4. I added the package installation
app-protect-threat-campaigns

Follow the steps below to build the new Docker image:

1. SSH to Docker App Protect + Docker repo VM

2. Run the command docker build -t app-protect:tc -f Dockerfile-sig-tc . <– Be care-
ful, there is a “.” (dot) at the end of the command

3. Wait until you see the message: Successfully tagged app-protect:tc

1.2. Class 2 - Protect Arcadia with NGINX App Protect in Docker 17

NGINX App Protect Documentation

Note: Please take time to understand what we ran. You may notice 2 changes. We ran the build with a new Dockerfile
Dockerfile-sig-tc and with a new tag tc. You can choose another tag like tcdate where date is the date of
today. We don’t know yet the date of the TC package ruleset.

Destroy the previous running NAP container and run a new one based on the new image (tag tc)

1. Check if the new app-protect Docker image is available locally by running docker images. You will notice
the new image with a tag of tc.

2. Destroy the existing and running NAP container docker rm -f app-protect

3. Run a new container with this image docker run -dit --name app-protect -p 80:80 -v /
home/ubuntu/nginx.conf:/etc/nginx/nginx.conf app-protect:tc

Warning: If you decided to change the tag tc by another tag, change your command line accordingly

4. Check that the Docker container is running docker ps

5. Check the Threat Campaign ruleset date included in the new Docker container docker exec
-it app-protect cat /var/log/nginx/error.log

Note: You can notice in one line of log, you get the Signature date and the Threat
Campaign date.

2020/07/01 17:03:14 [notice] 12#12: APP_PROTECT { "event": "configuration_
→˓load_success", "software_version": "3.74.0", "attack_signatures_package":{
→˓"revision_datetime":"2020-06-28T15:30:59Z","version":"2020.06.28"},
→˓"completed_successfully":true,"threat_campaigns_package":{"revision_
→˓datetime":"2020-06-25T19:13:36Z","version":"2020.06.25"}}

18 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

Simulate a Threat Campaign attack

1. RDP to the Jumphost (user / user)

2. Open Postman and select the collection NAP - Threat Campaign

3. Run 2 calls.

1. Strust2 Jakarta attack

2. Drupal attack

3. The NMAP attack is now detected as a Bot. We added Bot Protection in NAP v2.1. Do not run it.

4. In the next module, we will check the logs in Kibana.

Note: Congrats, you are running a new version of NAP with the latest Threat Campaign package and ruleset.

Video of this module (force HD 1080p in the video settings)

1.2.4 Step 6 - Check logs in Kibana

In this module, we will check the logs in ELK (Elastic, Logstash, Kibana)

Check how logs are sent and how to set the destination syslog server

Steps:

1. SSH to Docker App Protect + Docker repo VM

2. In /home/ubuntu (the default home folder), list the files ls -al

3. You can see 2 files log-default.json and nginx.conf

4. Open log-default.json less log-default.json. You will notice we log all requests.

{
"filter": {

"request_type": "all"
},

"content": {
"format": "default",
"max_request_size": "any",
"max_message_size": "5k"

}
}

5. Open nginx.conf less nginx.conf

user nginx;

worker_processes 1;
load_module modules/ngx_http_app_protect_module.so;

error_log /var/log/nginx/error.log debug;

events {
worker_connections 1024;

}

(continues on next page)

1.2. Class 2 - Protect Arcadia with NGINX App Protect in Docker 19

NGINX App Protect Documentation

(continued from previous page)

http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
sendfile on;
keepalive_timeout 65;

server {
listen 80;
server_name localhost;
proxy_http_version 1.1;

app_protect_enable on;
app_protect_security_log_enable on;
app_protect_security_log "/etc/nginx/log-default.json" syslog:server=10.1.

→˓20.6:5144;

location / {
resolver 10.1.1.9;
resolver_timeout 5s;
client_max_body_size 0;
default_type text/html;
proxy_pass http://k8s.arcadia-finance.io:30274$request_uri;

}
}

}

Note: You will notice in the nginx.conf file the refererence to log-default.json and the remote syslog
server (ELK) 10.1.20.6:5144

Open Kibana in the Jumphost or via UDF access

Steps:

1. In UDF, find the ELK VM and click Access > ELK

20 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

1. In Kibana, click on Dashboard > Overview

1. At the bottom of the dashboard, you can see the logs. Select one of the log entries and check the content

Note: You may notice the log content is similar to ASM and Adv. WAF

Note: The default time window in this Kibana dashboard is Last 15 minutes. If you do not see any requests, you
may need to extend the time window to a larger setting

Video of this module (force HD 1080p in the video settings)

1.2.5 Step 7 - Customize the WAF policy

So far, we have been using the default NGINX App Protect policy. As you notices in the previous lab (Step 5), the
nginx.conf does not file any reference to a WAF policy. It uses the default WAF policy.

In this lab, we will customize the policy and push a new config file to the docker container.

1.2. Class 2 - Protect Arcadia with NGINX App Protect in Docker 21

NGINX App Protect Documentation

Use a custom WAF policy and assign it per location

Steps:

1. SSH to the Docker App Protect + Docker repo VM

2. In the /home/ubuntu directory, create a new folder policy-adv

mkdir policy-adv

3. Create a new policy file named policy_base.json and paste the content below

vi ./policy-adv/policy_base.json

{
"name": "policy_name",
"template": { "name": "POLICY_TEMPLATE_NGINX_BASE" },
"applicationLanguage": "utf-8",
"enforcementMode": "blocking"

}

4. Create another policy file named policy_mongo_linux_JSON.json and paste the content below

vi ./policy-adv/policy_mongo_linux_JSON.json

{
"policy":{
"name":"evasions_enabled",
"template":{

"name":"POLICY_TEMPLATE_NGINX_BASE"
},
"applicationLanguage":"utf-8",
"enforcementMode":"blocking",
"blocking-settings":{

"violations":[
{

"name":"VIOL_JSON_FORMAT",
"alarm":true,
"block":true

},
{

"name":"VIOL_EVASION",
"alarm":true,
"block":true

},
{

"name": "VIOL_ATTACK_SIGNATURE",
"alarm": true,
"block": true

}
],
"evasions":[

{
"description":"Bad unescape",
"enabled":true,
"learn":false

},
{

(continues on next page)

22 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

(continued from previous page)

"description":"Directory traversals",
"enabled":true,
"learn":false

},
{

"description":"Bare byte decoding",
"enabled":true,
"learn":false

},
{

"description":"Apache whitespace",
"enabled":true,
"learn":false

},
{

"description":"Multiple decoding",
"enabled":true,
"learn":false,
"maxDecodingPasses":2

},
{

"description":"IIS Unicode codepoints",
"enabled":true,
"learn":false

},
{

"description":"IIS backslashes",
"enabled":true,
"learn":false

},
{

"description":"%u decoding",
"enabled":true,
"learn":false

}
]

},
"json-profiles":[

{
"defenseAttributes":{

"maximumTotalLengthOfJSONData":"any",
"maximumArrayLength":"any",
"maximumStructureDepth":"any",
"maximumValueLength":"any",
"tolerateJSONParsingWarnings":true

},
"name":"Default",
"handleJsonValuesAsParameters":false,
"validationFiles":[

],
"description":"Default JSON Profile"

}
],

"signature-settings": {
"attackSignatureFalsePositiveMode": "disabled",
"minimumAccuracyForAutoAddedSignatures": "low"

(continues on next page)

1.2. Class 2 - Protect Arcadia with NGINX App Protect in Docker 23

NGINX App Protect Documentation

(continued from previous page)

},
"server-technologies": [

{
"serverTechnologyName": "MongoDB"

},
{

"serverTechnologyName": "Unix/Linux"
},

{
"serverTechnologyName": "PHP"

}
]
}

}

Note: you can notice the difference between the base and the advanced policy.

5. Now, create a new nginx.conf in the policy-adv folder. Do not overwrite the existing /etc/nginx/
nginx.conf file, we need it for the next labs.

vi ./policy-adv/nginx.conf

user nginx;

worker_processes 1;
load_module modules/ngx_http_app_protect_module.so;

error_log /var/log/nginx/error.log debug;

events {
worker_connections 1024;

}

http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
sendfile on;
keepalive_timeout 65;

server {
listen 80;
server_name localhost;
proxy_http_version 1.1;

app_protect_enable on;
app_protect_security_log_enable on;
app_protect_security_log "/etc/nginx/log-default.json"

→˓syslog:server=10.1.20.6:5144;

location / {
resolver 10.1.1.9;
resolver_timeout 5s;
client_max_body_size 0;
default_type text/html;

(continues on next page)

24 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

(continued from previous page)

app_protect_policy_file "/etc/nginx/policy/policy_base.json";
proxy_pass http://k8s.arcadia-finance.io:30274$request_uri;

}
location /files {

resolver 10.1.1.9;
resolver_timeout 5s;
client_max_body_size 0;
default_type text/html;
app_protect_policy_file "/etc/nginx/policy/policy_mongo_linux_

→˓JSON.json";
proxy_pass http://k8s.arcadia-finance.io:30274$request_uri;

}
location /api {

resolver 10.1.1.9;
resolver_timeout 5s;
client_max_body_size 0;
default_type text/html;
app_protect_policy_file "/etc/nginx/policy/policy_mongo_linux_

→˓JSON.json";
proxy_pass http://k8s.arcadia-finance.io:30274$request_uri;

}
location /app3 {

resolver 10.1.1.9;
resolver_timeout 5s;
client_max_body_size 0;
default_type text/html;
app_protect_policy_file "/etc/nginx/policy/policy_mongo_linux_

→˓JSON.json";
proxy_pass http://k8s.arcadia-finance.io:30274$request_uri;

}

}
}

6. Last step is to run a new container (and delete the previous one) referring to these 3 files.

docker rm -f app-protect
docker run -dit --name app-protect -p 80:80 -v /home/ubuntu/policy-adv/
→˓nginx.conf:/etc/nginx/nginx.conf -v /home/ubuntu/policy-adv/policy_base.
→˓json:/etc/nginx/policy/policy_base.json -v /home/ubuntu/policy-adv/
→˓policy_mongo_linux_JSON.json:/etc/nginx/policy/policy_mongo_linux_JSON.
→˓json app-protect:20200316

7. Check that the app-protect:20200316 container is running

docker ps

8. RDP to the Jumhost as user:user and click on bookmark Arcadia NAP Docker

1.2. Class 2 - Protect Arcadia with NGINX App Protect in Docker 25

NGINX App Protect Documentation

Note: From this point on, NAP is using a different WAF policy based on the requested URI:

1. policy_base for / (the main app)

2. policy_mongo_linux_JSON for /files (the back end)

3. policy_mongo_linux_JSON for /api (the Money Transfer service)

4. policy_mongo_linux_JSON for /app3 (the Refer Friend service)

Use External References to make your policy dynamic

External references in policy are defined as any code blocks that can be used as part of the policy without being
explicitly pasted within the policy file. This means that you can have a set of pre-defined configurations for parts of
the policy, and you can incorporate them as part of the policy by simply referencing them. This would save a lot of
overhead having to concentrate everything into a single policy file.

A perfect use case for external references is when you wish to build a dynamic policy that depends on moving parts.
You can have code create and populate specific files with the configuration relevant to your policy, and then compile
the policy to include the latest version of these files, ensuring that your policy is always up-to-date when it comes to a
constantly changing environment.

Note: To use the external references capability, in the policy file the direct property is replaced by “xxxReference”
property, where xxx defines the replacement text for the property. For example, “modifications” section is replaced by
“modificationsReference”.

26 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

In this lab, we will create a custom blocking page and host this page in Gitlab.

Note: In this configuration, we are completely satisfied with the basic base policy we created previously /
policy-adv/policy_base.json, and we wish to use it as is. However, we wish to define a custom response
page using an external file located on an HTTP web server (Gitlab). The external reference file contains our custom
response page configuration.

As a reminder, this is the base policy we created:

{
"name": "policy_name",
"template": { "name": "POLICY_TEMPLATE_NGINX_BASE" },
"applicationLanguage": "utf-8",
"enforcementMode": "blocking"

}

Steps :

1. RDP to Jumphost and connect to GitLab (root / F5twister$)

2. Click on the project named NGINX App Protect / reference-blocking-page

3. Add a new file and name it blocking-custom-1.txt

1.2. Class 2 - Protect Arcadia with NGINX App Protect in Docker 27

NGINX App Protect Documentation

4. Paste the text below

[
{

"responseContent": "<html><head><title>Custom Reject Page</title>
→˓</head><body><p>This is a custom response page, it is
→˓supposed to overwrite the default page for the base NAP policy.&
→˓nbsp;</p><p>This page can be modified by a
→˓dedicated team, which does not have access to the WAF
→˓policy.

</p><p><img src=https://media.giphy.com/media/
→˓12NUbkX6p4xOO4/giphy.gif></p>
Your support ID is: <%TS.request.ID()%>
→˓

[Go Back]</body></html>
→˓",

"responseHeader": "HTTP/1.1 302 OK\\r\\nCache-Control: no-cache\\
→˓r\\nPragma: no-cache\\r\\nConnection: close",

"responseActionType": "custom",
"responsePageType": "default"

}
]

5. Click Commit Changes

6. SSH to Docker App Protect + Docker repo VM

7. Delete the running docker

docker rm -f app-protect

8. Modify the base policy created previously

vi ./policy-adv/policy_base.json

9. Modify the JSON as below

{
"name": "policy_name",
"template": { "name": "POLICY_TEMPLATE_NGINX_BASE" },
"applicationLanguage": "utf-8",
"enforcementMode": "blocking",
"responsePageReference": {

"link": "http://10.1.20.4/nginx-app-protect/reference-blocking-
→˓page/-/raw/master/blocking-custom-1.txt"

}
}

Note: You can notice the reference to the TXT file in Gitlab

10. Run a new docker refering to this new JSON policy

docker run -dit --name app-protect -p 80:80 -v /home/ubuntu/policy-adv/
→˓nginx.conf:/etc/nginx/nginx.conf -v /home/ubuntu/policy-adv/policy_base.
→˓json:/etc/nginx/policy/policy_base.json -v /home/ubuntu/policy-adv/
→˓policy_mongo_linux_JSON.json:/etc/nginx/policy/policy_mongo_linux_JSON.
→˓json app-protect:tc

11. In the Jumphost, open Chrome and connect to Arcadia NAP Docker bookmark

12. Enter this URL with a XSS attack http://app-protect.arcadia-finance.io/?a=<script>

28 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

13. You can see your new custom blocking page

14. Extra lab if you have time - modify this page in Gitlab and run a new docker. The policy is modified accordingly
without modifying the ./policy-adv/policy_base.json file.

Create an OWASP Top 10 policy for NAP

So far, we created basic and custom policy (per location) and used external references. Now it is time to deploy an
OWASP Top 10 policy. The policy not 100% OWASP Top 10 as several attacks can’t be blocked just with a negative
policy, we will cover a big part of OWASP Top 10.

Steps:

1. SSH to the Docker App Protect + Docker repo VM

2. In the /home/ubuntu directory, create a new folder policy_owasp_top10

mkdir policy_owasp_top10

3. Create a new policy file named policy_owasp_top10.json and paste the content below

vi ./policy_owasp_top10/policy_owasp_top10.json

{
"policy": {

"name": "Complete_OWASP_Top_Ten",
"description": "A generic, OWASP Top 10 protection items v1.0",
"template": {
"name": "POLICY_TEMPLATE_NGINX_BASE"
},
"enforcementMode":"blocking",
"signature-settings":{

"signatureStaging": false,
"minimumAccuracyForAutoAddedSignatures": "high"

},
"caseInsensitive": true,
"general": {
"trustXff": true
},
"data-guard": {
"enabled": true
},
"blocking-settings": {
"violations": [

{
"alarm": true,
"block": true,
"description": "Modified NAP cookie",
"name": "VIOL_ASM_COOKIE_MODIFIED"
},
{
"alarm": true,
"block": true,
"description": "XML data does not comply with format settings",

(continues on next page)

1.2. Class 2 - Protect Arcadia with NGINX App Protect in Docker 29

NGINX App Protect Documentation

(continued from previous page)

"name": "VIOL_XML_FORMAT"
},
{
"name": "VIOL_FILETYPE",
"alarm": true,
"block": true
}

],
"evasions": [

{
"description": "Bad unescape",
"enabled": true
},
{
"description": "Apache whitespace",
"enabled": true
},
{
"description": "Bare byte decoding",
"enabled": true
},
{
"description": "IIS Unicode codepoints",
"enabled": true
},
{
"description": "IIS backslashes",
"enabled": true
},
{
"description": "%u decoding",
"enabled": true
},
{
"description": "Multiple decoding",
"enabled": true,
"maxDecodingPasses": 3
},
{
"description": "Directory traversals",
"enabled": true
}

]
},
"xml-profiles": [
{

"name": "Default",
"defenseAttributes": {
"allowDTDs": false,
"allowExternalReferences": false
}

}
]

}
}

30 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

Note: Please have a quick look on this policy. You can notice several violations are enabled in order
to cover the different OWASP categories

4. Now, create a new nginx.conf in the policy_owasp_top10 folder. Do not overwrite the existing /
etc/nginx/nginx.conf file, we need it for the next labs.

vi ./policy_owasp_top10/nginx.conf

user nginx;

worker_processes 1;
load_module modules/ngx_http_app_protect_module.so;

error_log /var/log/nginx/error.log debug;

events {
worker_connections 1024;

}

http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
sendfile on;
keepalive_timeout 65;

server {
listen 80;
server_name localhost;
proxy_http_version 1.1;

app_protect_enable on;
app_protect_security_log_enable on;
app_protect_policy_file "/etc/nginx/policy/policy_owasp_top10.json

→˓";
app_protect_security_log "/etc/nginx/log-default.json"

→˓syslog:server=10.1.20.6:5144;

location / {
resolver 10.1.1.9;
resolver_timeout 5s;
client_max_body_size 0;
default_type text/html;
proxy_pass http://k8s.arcadia-finance.io:30274$request_uri;

}
}

}

Note: You can notice we get back to a very simple policy. This is what DevOps and DevSecOps
expect when they deploy NAP. Simple policy for OWASP Top10 attacks.

5. Last step is to run a new container (and delete the previous one) referring to these new files for OWASP Top 10
protection.

1.2. Class 2 - Protect Arcadia with NGINX App Protect in Docker 31

NGINX App Protect Documentation

docker rm -f app-protect
docker run -dit --name app-protect -p 80:80 -v /home/ubuntu/policy_owasp_
→˓top10/nginx.conf:/etc/nginx/nginx.conf -v /home/ubuntu/policy_owasp_
→˓top10/policy_owasp_top10.json:/etc/nginx/policy/policy_owasp_top10.json
→˓app-protect:20200316

6. Check that the app-protect:20200316 container is running

docker ps

7. RDP to the Jumhost as user:user and click on bookmark Arcadia NAP Docker

Video of this module (force HD 1080p in the video settings)

32 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

1.2.6 Step 8 - Deploy NAP with a CI/CD toolchain

In this module, we will deploy deploy NAP with a CI/CD pipeline. NAP is tied to the app, so when DevOps commits
a new app (or a new version), the CI/CD pipeline has to deploy a new NAP component in front. In order to avoid
repeating what we did previously, we will use a Signature package update as a trigger.

Note: When a new signature package is available, the CI/CD pipeline will build a new version of the Docker image
and run it in front of Arcadia Application

This is the workflow we will run

1. Check if a new Signature Package is available

2. Simulate a Commit in GitLab (Goal is to simulate a full automated process checking Signature Package date
every day)

3. This commit triggers a webhook in Gitlab CI

4. Gitlab CI runs the pipeline

1. Build a new Docker NAP image with a new tag date of the signature package

2. Destroy the previous running NAP container

3. Run a new NAP container with this new Signature Package

Note: Goal of this module is not to learn how to do it, but understand how I did it.

Check the Gitlab CI file

stages:
- Build_image
- Push_image
- Run_docker

before_script:
- docker info

Build_image:
stage: Build_image
script:

- TAG=`yum info app-protect-attack-signatures | grep Version | cut -d':' -f2`
- echo $TAG
- docker build -t 10.1.20.7:5000/app-protect:`echo $TAG` .
- echo export TAG=`echo $TAG` > $CI_PROJECT_DIR/variables

artifacts:
paths:
- variables

Push_image:
stage: Push_image
script:

- source $CI_PROJECT_DIR/variables
- echo $TAG
- docker push 10.1.20.7:5000/app-protect:`echo $TAG`

Run_docker:
(continues on next page)

1.2. Class 2 - Protect Arcadia with NGINX App Protect in Docker 33

NGINX App Protect Documentation

(continued from previous page)

stage: Run_docker
script:

- source $CI_PROJECT_DIR/variables
- echo $TAG
- ansible-playbook -i hosts playbook.yaml --extra-var dockertag=`echo $TAG`

Note: The challenge here was to retrieve the date of the package and tag the image with this date in order to have one
image per signature package date. This is useful if you need to roll back to a previous version of the signatures.

Simulate an automated task detecting a new Signature Package has been release by F5

Steps:

1. RDP to the Jumphost and open Chrome

2. Open Gitlab

1. If Gitlab is not available (502 error), restart the GitLab Docker container. SSH to the GitLab VM and run
docker restart gitlab

3. In GitLab, open NGINX App Protect / signature-update project

4. SSH (or WebSSH) to CICD server (Gitlab runner, Terraform, Ansible)

1. Run this command in order to determine the latest Signature Package date: yum info
app-protect-attack-signatures

2. You may notice the version date. In my case, when I write this lab 2020.06.30 was the most
recent version of the signatures package. We will use this date as a Docker tag, but this will be
done automatically by the CI/CD pipeline.

Trigger the CI/CD pipeline

Steps :

34 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

1. In GitLab, click on Repository and Tags in the left menu

2. Create a new tag and give it a name like Sig-<version date> where ideally
<version_date> should be replaced by the package version information found in the result
of the yum info step above. But it does not matter, you can put anything you want in this tag.

3. Click Create tag

4. At this moment, the Gitlab CI pipeline starts

5. In Gitlab, in the signature-update repository, click CI / CD > Pipelines

6. Enter into the pipeline by clicking on the running or passed button. And wait for the pipeline
to finish. You can click on every job/stage to check the steps

7. Check if the new image created and pushed by the pipeline is available in the Docker Registry.

1. In Chrome open bookmark Docker Registry UI

2. Click on App Protect Repository

3. You can see your new image with the tag 2020.06.30 - or any other tag based on the
latest package date.

1.2. Class 2 - Protect Arcadia with NGINX App Protect in Docker 35

NGINX App Protect Documentation

8. Connect in SSH to the Docker App Protect + Docker repo VM, and check the signature package
date running docker exec -it app-protect more /var/log/nginx/error.log

2020/07/06 09:32:05 [notice] 12#12: APP_PROTECT { "event": "configuration_
→˓load_success", "software_version": "3.74.0", "attack_signatures_package":{
→˓"revision_datetime":"2020-06-30T10:08:35Z","version":"2020.06.30"},
→˓"completed_successfully":true,"threat_campaigns_package":{}}

Note: Congratulations, you ran a CI/CD pipeline with a GitLab CI.

1.3 Class 3 - Protect Arcadia with NGINX App Protect in Linux host

In this class, we will deploy NGINX App Protect in CentOS host by installing the RPM packages from the official
NGINX Plus Repo.

Warning: In this lab, there are cert + keys to download the packages from official NGINX repo. It is forbidden
to share them with anyone.

1.3.1 Step 9 - Install the NGINX Plus and App Protect packages manually

In this module, we will manually install the NGINX Plus and NGINX App Protect modules in CentOS from the official
repository.

Warning: NGINX Plus private key and cert are already installed on the CentOS. Don’t share them.

Steps:

1. SSH to the App Protect in CentOS VM

2. Add NGINX Plus repository by downloading the file nginx-plus-7.repo to /etc/yum.repos.d:

sudo wget -P /etc/yum.repos.d https://cs.nginx.com/static/files/nginx-
→˓plus-7.repo

3. Install the most recent version of the NGINX Plus App Protect package (which includes NGINX Plus):

sudo yum install -y app-protect

4. Check the NGINX binary version to ensure that you have NGINX Plus installed correctly:

36 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

sudo nginx -v

5. Configure the nginx.conf file. Rename the existing nginx.conf to nginx.conf.old and create a new
one.

cd /etc/nginx/
sudo mv nginx.conf nginx.conf.old
sudo vi nginx.conf

Paste the below configuration into nginx.conf and save it

user nginx;
worker_processes auto;

error_log /var/log/nginx/error.log notice;
pid /var/run/nginx.pid;

load_module modules/ngx_http_app_protect_module.so;

events {
worker_connections 1024;

}

http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
sendfile on;
keepalive_timeout 65;

log_format main '$remote_addr - $remote_user [$time_local] "$request
→˓" '

'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';

access_log /var/log/nginx/access.log main;

server {
listen 80;

server_name localhost;
proxy_http_version 1.1;

app_protect_enable on;
app_protect_policy_file "/etc/nginx/NginxDefaultPolicy.json";
app_protect_security_log_enable on;
app_protect_security_log "/etc/nginx/log-default.json"

→˓syslog:server=10.1.20.6:5144;

location / {
resolver 10.1.1.9;
resolver_timeout 5s;
client_max_body_size 0;
default_type text/html;
proxy_pass http://k8s.arcadia-finance.io:30274$request_uri;

}
}

}

6. Create a log configuration file log_default.json (still in /etc/nginx/)

1.3. Class 3 - Protect Arcadia with NGINX App Protect in Linux host 37

NGINX App Protect Documentation

sudo vi log-default.json

Paste the configuration below into log-default.json and save it

{
"filter": {

"request_type": "all"
},
"content": {

"format": "default",
"max_request_size": "any",
"max_message_size": "5k"

}
}

7. Temporarily make SELinux permissive globally (https://www.nginx.com/blog/using-nginx-plus-with-selinux).

sudo setenforce 0

8. Start the NGINX service:

sudo systemctl start nginx

9. Check everything is running

less /var/log/nginx/error.log

2020/05/22 09:13:20 [notice] 6195#6195: APP_PROTECT { "event":
→˓"configuration_load_start", "configSetFile": "/opt/app_protect/config/
→˓config_set.json" }
2020/05/22 09:13:20 [notice] 6195#6195: APP_PROTECT policy 'app_protect_
→˓default_policy' from: /etc/nginx/NginxDefaultPolicy.json compiled
→˓successfully
2020/05/22 09:13:20 [notice] 6195#6195: APP_PROTECT { "event":
→˓"configuration_load_success", "software_version": "2.52.1", "attack_
→˓signatures_package":{"revision_datetime":"2019-07-16T12:21:31Z"},
→˓"completed_successfully":true}
2020/05/22 09:13:20 [notice] 6195#6195: using the "epoll" event method
2020/05/22 09:13:20 [notice] 6195#6195: nginx/1.17.9 (nginx-plus-r21)
2020/05/22 09:13:20 [notice] 6195#6195: built by gcc 4.8.5 20150623 (Red
→˓Hat 4.8.5-39) (GCC)
2020/05/22 09:13:20 [notice] 6195#6195: OS: Linux 3.10.0-1127.8.2.el7.x86_
→˓64
2020/05/22 09:13:20 [notice] 6195#6195: getrlimit(RLIMIT_NOFILE):
→˓1024:4096
2020/05/22 09:13:20 [notice] 6203#6203: start worker processes
2020/05/22 09:13:20 [notice] 6203#6203: start worker process 6205
2020/05/22 09:13:26 [notice] 6205#6205: APP_PROTECT { "event": "waf_
→˓connected", "enforcer_thread_id": 0, "worker_pid": 6205, "mode":
→˓"operational", "mode_changed": false}

Note: Congrats, now your CentOS instance is protecting the Arcadia application

Note: You may notice we used exactly the same log-default.json and nginx.conf files as in the Docker

38 Chapter 1. Publish and protect modern applications

https://www.nginx.com/blog/using-nginx-plus-with-selinux

NGINX App Protect Documentation

lab.

Now, try in the Jumphost

Steps:

1. RDP to the Jumphost with credentials user:user

2. Open Chrome and click Arcadia NAP CentOS

3. Run the same tests as the Docker lab and check the logs in Kibana

Next step is to install the latest Signature Package

Steps:

1. To add NGINX Plus App Protect signatures repository, download the file app-protect-signatures-7.repo to
/etc/yum.repos.d:

sudo wget -P /etc/yum.repos.d https://cs.nginx.com/static/files/app-
→˓protect-signatures-7.repo

2. Update attack signatures:

sudo yum install -y app-protect-attack-signatures

To install a specific version, list the available versions:

sudo yum --showduplicates list app-protect-attack-signatures

To upgrade to a specific version:

sudo yum install -y app-protect-attack-signatures-2020.04.30

To downgrade to a specific version:

sudo yum downgrade app-protect-attack-signatures-2019.07.16

3. Reload NGINX process to apply the new signatures:

sudo nginx -s reload

4. Check the new signatures package date:

less /var/log/nginx/error.log

Note: Upgrading App Protect does not install new Attack Signatures. You will get the same Attack Signature release
after upgrading App Protect. If you want to also upgrade the Attack Signatures, you will have to explicitly update
them by the respective command above.

Last step is to install the Threat Campaign package

1.3. Class 3 - Protect Arcadia with NGINX App Protect in Linux host 39

NGINX App Protect Documentation

Note: The App Protect installation does not come with a built-in Threat campaigns package like Attack Signatures.
Threat campaigns Updates are released periodically whenever new campaigns and vectors are discovered, so you
might want to update your Threat campaigns from time to time. You can upgrade the Threat campaigns by updating
the package any time after installing App Protect. We recommend you upgrade to the latest Threat campaigns version
right after installing App Protect.

Note: After having updated the Threat campaigns package you have to reload the configuration in order for the new
version of the Threat campaigns to take effect. Until then App Protect will run with the old version, if exists. This is
useful when creating an environment with a specific tested version of the Threat campaigns.

Steps :

1. As the repo has been already added, no need to add it. TC and Signatures use the same repo https://cs.
nginx.com/static/files/app-protect-signatures-7.repo

2. Install the package

sudo yum install app-protect-threat-campaigns

3. Reload NGINX process to apply the new signatures:

sudo sudo nginx -s reload

4. Check the new Threat Campaign package date:

less /var/log/nginx/error.log

Note: We don’t spend more time on Threat Campaign in this lab as we did it already in the Docker lab (Class 2 - Step
5)

Video of this module (force HD 1080p in the video settings)

1.3.2 Step 10 - Deploy App Protect via CI/CD pipeline

In this module, we will install NGINX Plus and App Protect packages on CentOS with a CI/CD toolchain. NGINX
teams created Ansible modules to deploy it easily in a few seconds.

Note: The official Ansible NAP role is available here https://github.com/nginxinc/ansible-role-nginx-app-protect and
the NGINX Plus role here https://github.com/nginxinc/ansible-role-nginx

Uninstall the previous running NAP

1. SSH to the App Protect in CentOS VM

2. Uninstall NAP in order to start from scratch

sudo yum remove -y app-protect*

40 Chapter 1. Publish and protect modern applications

https://github.com/nginxinc/ansible-role-nginx-app-protect
https://github.com/nginxinc/ansible-role-nginx

NGINX App Protect Documentation

3. Uninstall NGINX Plus packages

sudo yum remove -y nginx-plus*

4. Delete/rename the directories from the existing deployment

sudo rm -rf /etc/nginx
sudo rm -rf /var/log/nginx

Run the CI/CD pipeline from Jenkins

Steps:

1. RDP to the Jumphost with credentials user:user

2. Open Chrome and open Gitlab (if not already opened)

3. Select the repository ansible-deploy and go to CI /CD

The pipeline is as below:

1.3. Class 3 - Protect Arcadia with NGINX App Protect in Linux host 41

NGINX App Protect Documentation

stages:
- Requirements
- Deploy_nap
- Workaround_dns

Requirements:
stage: Requirements
script:

- ansible-galaxy install -r requirements.yml --force

Deploy_nap:
stage: Deploy_nap
script:

- ansible-playbook -i hosts app-protect.yml

Workaround_dns:
stage: Workaround_dns
script:

- ansible-playbook -i hosts copy-nginx-conf.yml

Note: As you can notice, the Requirements stage installs the requirements. We use the parameter --force
in order to be sure we download and install the latest version of the module.

Note: This pipeline executes 2 Ansible playbooks.

1. One playbook to install NAP (Nginx Plus included)

2. The last playbook is just there to fix an issue in UDF for the DNS resolver

When the pipeline is finished executing, perform a browser test within Chrome using the Arcadia NAP CentOS
bookmark

Note: Congrats, you deployed NGINX Plus and NAP with a CI/CD pipeline. You can check the pipelines in
GitLab if you are interested to see what has been coded behind the scenes. But it is straight forward as the Ansible
modules are provided by F5/NGINX.

42 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

1.4 Class 4 - Protect Arcadia with NGINX App Protect in Kubernetes
Ingress Controller

In this class, we will deploy NGINX App Protect in KIC. To do so, we will deploy an NGINX+ instance in Kubernetes
with NAP installed.

Warning: In this lab, there are cert + keys to download the packages from official NGINX repo. It is forbidden
to share them with anyone.

1.4.1 Step 11 - Deploy a new version of the NGINX Plus Ingress Controller

As a reminder, in Class 1 - Step 2 - Publish Arcadia App with a NGINX Plus Ingress
Controller we deployed a NGINX Plus instance as an Ingress Controller in our Kubernetes cluster.

Now, with NAP v1.3, we can deploy this NGINX Plus instance with the NAP module enabled.

1.4. Class 4 - Protect Arcadia with NGINX App Protect in Kubernetes Ingress Controller 43

NGINX App Protect Documentation

To do so, we will:

1. Deploy a new version of the Pod (NGINX r22 + NAP v1.3)

2. Deploy a new Ingress configuration template (with NAP configuration files)

Warning: The NGINX Plus Ingress Controller image is available on my private Gitlab repo. Don’t share the key.

Steps

1. SSH (or WebSSH and cd /home/ubuntu/) to CICD Server

2. Run this command in order to delete the previous KIC kubectl delete -f /home/ubuntu/
k8s_ingress/full_ingress_arcadia.yaml

3. Run this command in order to push the new version of the KIC kubectl apply -f /home/ubuntu/
k8s_ingress/full_ingress_arcadia_nap.yaml

4. Check the Ingress arcadia-ingress (in the default namespace) by clicking on the 3 dots on the right
and edit

5. Scroll down and check the specs

As you can notice, we added few lines in our Ingress declaration. To do so, I followed the guide (https://docs.nginx.
com/nginx-ingress-controller/app-protect/installation/)

1. I added NAP specifications (from the guide)

44 Chapter 1. Publish and protect modern applications

https://docs.nginx.com/nginx-ingress-controller/app-protect/installation/
https://docs.nginx.com/nginx-ingress-controller/app-protect/installation/

NGINX App Protect Documentation

2. I added NAP annotations for Arcadia app (see below)

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: arcadia-ingress
annotations:

appprotect.f5.com/app-protect-policy: "default/dataguard-blocking"
appprotect.f5.com/app-protect-enable: "True"
appprotect.f5.com/app-protect-security-log-enable: "True"
appprotect.f5.com/app-protect-security-log: "default/logconf"
appprotect.f5.com/app-protect-security-log-destination: "syslog:server=10.1.20.

→˓6:5144"

spec:
rules:
- host: k8s.arcadia-finance.io

http:
paths:
- path: /

backend:
serviceName: main
servicePort: 80

- path: /files
backend:
serviceName: backend
servicePort: 80

- path: /api
backend:
serviceName: app2
servicePort: 80

- path: /app3
backend:
serviceName: app3
servicePort: 80

Please a make a new test by clicking on Arcadia k8s Chrome bookmark.

1. Open Chrome

2. Click on Arcadia k8s bookmark

3. Now, you are connecting to Arcadia App from a new KIC with NAP enabled

4. Send an attack (like a XSS in the address bar) by appending ?a=<script>

5. Attack is blocked

6. Open ELK and check your logs

1.4. Class 4 - Protect Arcadia with NGINX App Protect in Kubernetes Ingress Controller 45

NGINX App Protect Documentation

1.5 Class 5 - Advanced features

In this class, we will use the NAP in Centos and will deploy advanced features offered by the latest NAP release.

1. Bot Protection

2. Cryptonice integration

3. API Security with OpenAPI file import

Warning: In this lab, there are cert + keys to download the packages from official NGINX repo. It is forbidden
to share them with anyone.

1.5.1 Step 12 - Bot Protection

Bot signatures provide basic bot protection by detecting bot signatures in the User-Agent header and URI. The
bot-defense section in the policy is enabled by default.

Each bot signature belongs to a bot class. Search engine signatures such as googlebot are under the trusted_bots
class, but App-Protect performs additional checks of the trusted bot’s authenticity. If these checks fail, it means
that the respective client impersonated the search engine in the signature and it will be classified as class -
malicous_bot, anomaly - Search engine verification failed, and the request will be blocked,
irrespective of the class’s mitigation actions configuration.

An action can be configured for each bot class, or may also be configured per each bot signature individually:

1. ignore - bot signature is ignored (disabled)

2. detected - only report without raising the violation - VIOL_BOT_CLIENT. The request is considered legal
unless another violation is triggered.

3. alarm - report, raise the violation, but pass the request. The request is marked as illegal.

4. block - report, raise the violation, and block the request

Note: We could stop the lab here, and run Bot requests. As Bot protection is enabled by default, the default
protection will apply. But in order to understand to customise the config, let’s create a new Policy JSON file.

Steps for the lab

1. SSH (or WebSSH) to App Protect in CentOS

2. Go to cd /etc/nginx

3. ls and check the files created during the previous CI/CD pipeline job (steps 10)

[centos@ip-10-1-1-7 nginx]$ ls
app-protect-log-policy.json conf.d koi-utf mime.types
→˓NginxApiSecurityPolicy.json nginx.conf.orig NginxStrictPolicy.
→˓json uwsgi_params
app-protect-security-policy.json fastcgi_params koi-win modules
→˓nginx.conf NginxDefaultPolicy.json scgi_params
→˓ win-utf

4. Create a new NAP policy JSON file with Bot

46 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

Note: The default actions for classes are: detect for trusted-bot, alarm for
untrusted-bot, and block for malicious-bot. In this example, we enabled bot defense
and specified that we want to raise a violation for trusted-bot, and block for untrusted-bot.

sudo vi /etc/nginx/policy_bots.json

{
"policy": {

"name": "bot_defense_policy",
"template": {

"name": "POLICY_TEMPLATE_NGINX_BASE"
},
"applicationLanguage": "utf-8",
"enforcementMode": "blocking",
"bot-defense": {

"settings": {
"isEnabled": true

},
"mitigations": {

"classes": [
{

"name": "trusted-bot",
"action": "alarm"

},
{

"name": "untrusted-bot",
"action": "block"

},
{

"name": "malicious-bot",
"action": "block"

}
]

}
}

}
}

5. Modify the nginx.conf file is order to reference to this new policy json file. Just a new line to add.

sudo vi /etc/nginx/nginx.conf

user nginx;

worker_processes 1;
load_module modules/ngx_http_app_protect_module.so;

error_log /var/log/nginx/error.log debug;

events {
worker_connections 1024;

}

http {
include /etc/nginx/mime.types;

(continues on next page)

1.5. Class 5 - Advanced features 47

NGINX App Protect Documentation

(continued from previous page)

default_type application/octet-stream;
sendfile on;
keepalive_timeout 65;

server {
listen 80;
server_name localhost;
proxy_http_version 1.1;

app_protect_enable on;
app_protect_policy_file "/etc/nginx/policy_bots.json";
app_protect_security_log_enable on;
app_protect_security_log "/etc/nginx/app-protect-log-policy.json"

→˓syslog:server=10.1.20.6:5144;

location / {
resolver 10.1.1.9;
resolver_timeout 5s;
client_max_body_size 0;
default_type text/html;
proxy_pass http://k8s.arcadia-finance.io:30274$request_uri;

}
}

}

6. Reload Nginx

sudo nginx -s reload

Generate simulated Bot traffic

1. RDP to Windows Jumphost as user:user

2. Open Chrome and check your can acces Arcadia Web Application via the Bookmark Arcadia NAP
CentOS

3. Now, on the Desktop, launch Jmeter

4. In Jmeter, open the project in File >> Open Recent >> HTTP Request Bots.jmx. This file is located
in folder Desktop > lab-links > jmeter_files

48 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

5. Now, run the project by click on the GREEN PLAY BUTTON

6. THe project is sending HTTP requests to the NAP with a public IP address (known as bad reputation) and
with a Bot User-Agent. We will simulate bots by changing the user agent.

7. You can expand Thread Group and click on View Results Tree to see each request sent.

8. Now, go to ELK - Kibana from Chrome, and look at your Overview dashboard.

1.5. Class 5 - Advanced features 49

NGINX App Protect Documentation

9. You can notice the widget Bots Categories is now populated.

10. You can notice Good and Bad request in the widgets, but let’s focus on the logs at the bottom of the dashboard

Note: You can notice we were able to locate the source of the request because jmeter inject an
XFF header.

11. Open the logs in full screen

12. Look at the logs, and open up one or two logs alerted or blocked. You can notice the Bot Category,
the violation . . .

50 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

Note: Now, your NAP is protecting against known bots and you can customize your policy in order to make it
more strick or not.

1.5.2 Step 13 - Cryptonice

What is cryptonice ?

Cryptonice is a command-line tool and Python library that allows a user to examine for one or more supplied domain
names:

1. the TLS configuration

2. certificate information

3. web application headers

4. DNS records

Cryptonice is built heavily upon the excellent SSLyze and Cryptography Python libraries.

You can find more information on how to use Cryptonice here : https://cryptonice.readthedocs.io/en/latest/

1.5. Class 5 - Advanced features 51

https://cryptonice.readthedocs.io/en/latest/

NGINX App Protect Documentation

Note: The goal here, with NAP, is to examine all websites published by our CI/CD pipeline.

Steps for the lab

Warning: As we have only one website published, Arcadia Finance website, we will run tests with real public
websites.

To do so, Cryptonice will run as a Docker container, and we will run a command inside this container. The command
is

docker exec -dit cryptonice-gitlab sh -c "cd /home && cryptonice {{ fqdn }}"

The variable fqdn will be replaced by the FQDN you will set in the pipeline. For the demo, you will set manually
this variable, but in a real world, this variable is set by the pipeline itself.

52 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

Steps

1. RDP to Windows Jumphost with credentials user:user

2. In Chrome, open Gitlab tab or bookmark, and click on NGINX App Protect > Cryptonice repository

3. If you want, you can check the Gitlab CI pipeline and the Ansible playbook. To make it simple, Gitlab CI
pipeline runs the ansible playbook

- name: copy content to ELK

hosts: elk

tasks:
- name: delete all JSON in ELK
shell: rm -f /home/gitlab-runner/crypto/*

- name: run Cryptonice
hosts: localhost

tasks:
- name: Delete existing tests
shell: rm -f /var/lib/gitlab-runner/crypto/*

- name: Run cryptonice
command: docker exec -dit cryptonice-gitlab sh -c "cd /home &&

→˓cryptonice {{ fqdn }}"

- name: WAIT
wait_for:
path: /var/lib/gitlab-runner/crypto/{{ fqdn }}.json

- name: rename file
shell: mv /var/lib/gitlab-runner/crypto/{{ fqdn }}.json /var/lib/

→˓gitlab-runner/crypto/{{ fqdn }}.bck

- name: add EOL
shell: awk '{printf "%s\r\n\r\n", $0}' /var/lib/gitlab-runner/crypto/{

→˓{ fqdn }}.bck > /var/lib/gitlab-runner/crypto/{{ fqdn }}.json

- name: copy content to ELK
hosts: elk

tasks:
- name: copy JSON to ELK
copy:
src: /var/lib/gitlab-runner/crypto/{{ fqdn }}.json
dest: /home/gitlab-runner/crypto/{{ fqdn }}.json

Note: As you can notice, running the command is not enough, we had to cleanup the environment
and do some tricks so that ELK can read the outcomes. YES, all the outcomes will be readable in an
ELK dashboard.

4. In the left menu, click on CI / CD and Pipelines

5. Click Run Pipeline

1.5. Class 5 - Advanced features 53

NGINX App Protect Documentation

6. Define the variable CI_FQDN with any FQDN you want to test. Some websites like www.f5.com, or Facebook
will raise some recommandations.

7. Click Run Pipeline and Wait :)

The outcomes

Now, it is time to see the results and what we can do with the information provided by Cryptonice

1. You should still be connected to the Jumphost RDP

2. In Chrome, open Kibana or use the Remote Access ELK in UDF if you prefer to connect from your laptop.

3. In ELK left menu, click on Discover

54 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

4. Then select Demo-crypto*

5. You should now see some logs. If not, change the time range on the top right corner. You can open a log and
look at the content.

6. Now, go to the Dashbboards and click on Cryptonice dashboard

1.5. Class 5 - Advanced features 55

NGINX App Protect Documentation

7. Change the time range to Last 1 year so that you can see all tests done so far (I did some for you)

8. You can see now an example of a Cryptonice dashboard. Feel free to create your own.

56 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

Note: In this Dashboard, you can see several information collected by Cryptonice. If the report contents High
Recommandations, the website appears at the bottom and the widget is updated accordingly.

Note: Goal is to provide an easy and automated way for SecOps and DevOps to see their level of Security for
TLS/HTTP/DNS Layers.

1.5. Class 5 - Advanced features 57

NGINX App Protect Documentation

1.5.3 Step 14 - Protect Arcadia API

Context

As a reminder, in Steps 9 and 10, we deployed NAP in CentOS.

1. Step 9 manually

2. Step 10 via CI/CD pipelines

The Arcadia web application has several APIs in order to:

1. Buy stocks

2. Sell stocks

3. Transfer money to friends

In order to protect these APIs, we will push (or pull) an OpenAPI specification file into NAP so that it can
build the WAF policy from this file.

You can find the Arcadia Application OAS3 file here : https://app.swaggerhub.com/apis/F5EMEASSA/
Arcadia-OAS3/2.0.1-schema

Note: As you can notice, there are 4 URLs in this API. And a JSON schema has been created so that every JSON
parameter is known.

58 Chapter 1. Publish and protect modern applications

https://app.swaggerhub.com/apis/F5EMEASSA/Arcadia-OAS3/2.0.1-schema
https://app.swaggerhub.com/apis/F5EMEASSA/Arcadia-OAS3/2.0.1-schema

NGINX App Protect Documentation

Steps for the lab

1. SSH (or WebSSH) to App Protect in CentOS

2. Go to cd /etc/nginx

3. ls and check the files created during the previous CI/CD pipeline job

[centos@ip-10-1-1-7 nginx]$ ls
app-protect-log-policy.json conf.d koi-utf mime.types
→˓NginxApiSecurityPolicy.json nginx.conf.orig NginxStrictPolicy.
→˓json uwsgi_params
app-protect-security-policy.json fastcgi_params koi-win modules
→˓nginx.conf NginxDefaultPolicy.json scgi_params
→˓ win-utf

Note: You can notice a NAP policy NginxApiSecurityPolicy.json exists. This is template
for API Security. We will use it.

4. Edit sudo vi NginxApiSecurityPolicy.json and modify it with the link to the OAS file for Ar-
cadia API. This file resides in SwaggerHub. Don’t forget the {}

{
"policy" : {

"name" : "app_protect_api_security_policy",
"description" : "NGINX App Protect API Security Policy. The policy is

→˓intended to be used with an OpenAPI file",
"template": {

"name": "POLICY_TEMPLATE_NGINX_BASE"
},

"open-api-files" : [
{

"link": "https://api.swaggerhub.com/apis/F5EMEASSA/Arcadia-
→˓OAS3/2.0.1-schema/swagger.json"

}
],

"blocking-settings" : {
"violations" : [

{
...

5. Now, edit sudo vi nginx.conf and modify it as below. We refer to the new WAF policy created previously

user nginx;
worker_processes auto;

error_log /var/log/nginx/error.log notice;
pid /var/run/nginx.pid;

load_module modules/ngx_http_app_protect_module.so;

events {
worker_connections 1024;

}

(continues on next page)

1.5. Class 5 - Advanced features 59

NGINX App Protect Documentation

(continued from previous page)

http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
sendfile on;
keepalive_timeout 65;

log_format main '$remote_addr - $remote_user [$time_local] "$request
→˓" '

'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';

access_log /var/log/nginx/access.log main;

server {
listen 80;
server_name localhost;
proxy_http_version 1.1;

app_protect_enable on;
app_protect_policy_file "/etc/nginx/NginxApiSecurityPolicy.json";
app_protect_security_log_enable on;
app_protect_security_log "/etc/nginx/log-default.json"

→˓syslog:server=10.1.20.6:5144;

location / {
resolver 10.1.1.9;
resolver_timeout 5s;
client_max_body_size 0;
default_type text/html;
proxy_pass http://k8s.arcadia-finance.io:30274$request_uri;

}
}

}

6. Now, restart the NGINX service sudo systemctl restart nginx

Test your API

1. RDP to Windows Jumphost with credentials user:user

2. Open Postman`

3. Open Collection Arcadia API

60 Chapter 1. Publish and protect modern applications

NGINX App Protect Documentation

4. Send your first API Call with Last Transactions. You should see the last transactions. This is just a GET.

5. Now, send a POST, with POST Buy Stocks. Check the request content (headers, body), and compare with

1.5. Class 5 - Advanced features 61

NGINX App Protect Documentation

the OAS3 file in SwaggerHub.

6. Last test, send an attack. Send POST Buy Stocks XSS attack. Your request will be blocked.

7. Check in ELK the violation.

8. You can make more tests with the other API calls

62 Chapter 1. Publish and protect modern applications

	Publish and protect modern applications
	Class 1 - Deploy modern application with modern tools
	Class 2 - Protect Arcadia with NGINX App Protect in Docker
	Class 3 - Protect Arcadia with NGINX App Protect in Linux host
	Class 4 - Protect Arcadia with NGINX App Protect in Kubernetes Ingress Controller
	Class 5 - Advanced features

